Part Number Hot Search : 
CM600 2SC4509 LCE11 MAX4000 C2050IS 0M26V AP9585H 07000
Product Description
Full Text Search
 

To Download IR2130D Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD-60022B
IR2130D
Features
n Hermetic n Floatingchanneldesignedforbootstrap
3-PHASE DRIVER
Product Summary
VOFFSET IO+/VOUT ton/off (typ.) Deadtime (typ.) 400V max. 200 mA / 420 mA 10 - 20V 675 & 425 ns 0.9 s
n n n n n n
operation Fully operational to +400V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 10 to 20V Undervoltage lockout for all channels Over-current shutdown turns off all six drivers Independent half-bridge drivers Matched propagation delay for both channels Outputs in phase with inputs
Description
The IR2130D is a high voltage, high speed power MOSFET and IGBT driver with three independent high and low side referenced output channels. Proprietary HVIC technology enables ruggedized monolithic construction. Logic inputs are compatible with 5V CMOS or LSTTL outputs. A groundreferenced operational amplifier provides analog feedback of bridge current via an external current sense resistor. A current trip function which terminates all six outputs is also derived from this resistor.
An open drain FAULT signal indicates if an overcurrent or undervoltage shutdown has occurred. The output driverhgre a high pulse current buffer stage designed for minimum driver cross-con duction. Propagation delays are matched to simplify use at high frequencies. The floating channels can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration which operate up to 400 volts.
Absolute Maximum Ratings
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to Vso. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions.
Symbol
VB1,2,3 VS1,2,3 VHO1,2,3 VCC VSO VLO1,2,3 VIN VFLT VCAO VCAdVS/dt PD RthJA Tj TS TL
Parameter
High Side Floating Supply Absolute Voltage High Side Floating Supply Offset Voltage High Side Output Voltage Low Side Fixed Supply Voltage Low Side Driver Return Low Side Output Voltage Logic Input Voltage (HIN, LIN & SD) Fault Output Voltage Operational Amplifier Output Voltage Operational amplifier Inverting Input Voltage Allowable Offset Supply Voltage Transient (Fig. 16) Package Power Dissipation @ TA< = 25C (Fig. 19) Thermal Resistance, Junction to Ambient Junction Temperature Storage Temperatue Lead Temperature (Soldering, 10 seconds) Weight
Min.
Max.
Units
-0.3 VS1,2,3 + 20 VSO - 5 VSO + 400 VS1,2,3 - 0.3 VS1,2,3 + 0.3 -0.3 20 -5 V CC + 0.3 VSO - 0.3 VCC + 0.3 -0.3 VCC + 0.3 -0.3 VCC + 0.3 -0.3 VCC + 0.3 -0.3 VCC + 0.3 -- 50 -- 1.5 -- 70 -55 125 -55 150 -- 300 6.1 (typical)
V
V/nS W C/W C g
www.irf.com
1
3/1/00
IR2130D
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to VS0. The VS offset rating is tested with all supplies biased at 15V differential.
Symbol
VB1,2,3 VS1,2,3 VHO1,2,3 VCC VSS VLO1,2,3 VIN VFLT VCAO VCA-
Parameter
High Side Floating Supply Voltage High Side Floating Supply Offset Voltage High Side Output Voltage Low Side Fixed Supply Voltage Logic Ground Low Side Output Voltage Logic Input Voltage (HIN, LIN & SD) Fault Output Voltage Operational Amplifier Output Voltage Operational Amplifier Inverting Input Voltage
Min.
VS1,2,3 + 10 V SO - 5 VS1,2,3 10 -5 0 V SS VSS VSS VSS
Max.
VS1,2,3 + 20 VSO + 400 VB1,2,3 20 5 VCC VSS + 5 VCC 5 5
Units
V
Dynamic Electrical Characteristics
VBIAS (VCC, VBS1,2,3) = 15V, VS0,1,2,3 = VSS, CL = 1000 pF unless otherwise specified. Tj = 25C Tj = -55 to 125C
850 125 550 55 1.3 -- -- -- -- 0.25 -- -- -- -- -- 2.7 1.5 850 175 600 85 1.5 1100 1000 -- -- -- -- --
Symbol
ton tr toff tf DT titrip tflt tfltclr tflt,in tbl SR+ SR-
Parameter
Turn-On Propagation Delay (all six channels) Turn-On Rise Time (all six channels) Turn-Off Propagation Delay (all six channels) Turn-Off Fall Time (all six channels) Deadtime (LS Turn-off to HS Turn-on & HS Turn-off to LS Turn-on) ITRIP to Output Shutdown Prop. Delay ITRIP to FAULT Indication Delay LIN1, 2, 3 To FAULT Clear Time Input Filter Time (all six inputs) ITRIP Blanking Time Amplifier Slew Rate (+) Amplifier Slew Rate (-)
Min. Typ. Max. Min. Max. Units Test Conditions
500 -- 300 -- 0.4 400 335 5.5 -- -- 4.4 2.4 675 80 425 35 0.9 CL= 1000pF VS1,2,3 = 0 to 400 V V IN = 0 & 5 V
ns
s ns ns s ns ns V/s V/s
660 920 590 845 10 12.5 310 -- 400 -- 6.2 -- 3.2 --
CL = 1000pF, VIN = 0 & 5V CL = 1000pF, VIN, VITRIP = 0 & 5V VIN = 0 & 5V VITRIP = 1V
Typical Connection
4
2
www.irf.com
IR2130D
Static Electrical Characteristics
VBIAS (VCC , VBS1, 2, 3) = 15V, VSO1, 2, 3 = VSS unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all six logic input leads: HIN1, 2, 3 & LIN1, 2, 3. The VO and IO parameters are referenced to VSO1, 2, 3.
Tj = 25C
Tj=55-125C Units
A mA A nA V mV mV nA CA- = 2.5V VSO = CA- = 0.2V
Symbol
ILK IQBS IQCC IIN+ IINIITRIP + IITRIPVIN,IH VIN,IL VIT,TH+ VOS Ron,FLT ICAVCCUV+ VCCUVVBSUV+ VBSUVIO+ IOVOH,Amp VOL,Amp ISRC,Amp ISNK,Amp CMRR PSRR VOH VOL
Parameter
Offset Supply Leakage Currents Quiescent VBS Supply Current Quiescent VCC Supply Current Logic "1" Input Bias Current(OUT= HI) Logic "0" Input Bias Current(OUT=LO) "High" ITRIP Bias Current "Low" ITRIP Bias Current Logic "0" Input Voltage( OUT = LO ) Logic "1" Input Voltage ( OUT = HI ) ITRIP Input Positive Going Threshold Amplifier Input Offset Voltage FAULT- Low On Resistance CA- Input Bias Current VCC Supply Undervoltage Positive Going Threshold VCC Supply Undervoltage Negative Going Threshold VBS Supply Undervoltage Positive Going Threshold VBS Supply Undervoltage Negative Going Threshold Output High Short Circuit Pulsed Current Output Low Short Circuit Pulsed Current Amplifier High Level Output Voltage Amplifier Low Level Output Voltage Amplifier Output Source Current Amplifier Output Sink Current Amplifier Common Mode Rejection Ratio Amplifier Power Supply Rejection Ratio High Level Output Voltage Low Level Output Voltage
Min.
-- -- -- -- -- -- -- -- -- 400 -- -- -- 8.3 8.0 7.5 7.1 200 420 5.0 -- 2.3 1.0 60 55 -- --
Typ.
-- 15 3.0 450 225 75 -- -- -- 490 -- 55 0.5 9.0 8.7 8.4 8.0 250 500 5.2 2.5 4.0 2.1 80 75 -- --
Max. Min. Max.
50 30 4.0 650 400 150 100 -- -- 580 30 75 4.0 10.6 10.5 9.2 8.8 -- -- 5.4 20 -- -- -- -- 100 100 -- -- -- -- -- -- -- 2.2 -- 350 -- -- -- 8.0 7.7 -- -- -- -- 4.9 -- 1.5 0.5 -- -- -- -- 500 45 6.0 1050 -- -- 170 -- 0.8 580 -- 150 4.0 10.7 10.5 --
Test Conditions
VB = VS=400V VIN = 0V or 5V VIN = 0V or 5V VIN = 0V VIN = 5V ITRIP = 5V ITRIP =0V
V
V -- -- -- 5.6 20 -- -- -- -- 100 100 mV dB mA V mV mA VOUT = VIN- = 0V PW <= 10S VOUT =15, VIN- =5V PW <= 10S CA- = 0V, VSO =1V CA- = 1V, VSO =0V
CA- = 0V, VSO =1V, CAO=4V CA- = 1V, VSO =0V,CAO=2V
CA- =VSO =0.1V & 5V CA- = VSO =0.2V VCC = 10V & 20V VIN- = 0V, IO = 0A VIN- = 5V, IO = 0A
www.irf.com
3
IR2130D
Static Electrical Characteristics Continued
VBIAS (VCC, VBS1, 2, 3) = 15V, VSO1, 2, 3 = VSS unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all six logic input leads: HIN1, 2, 3 & LIN1, 2, 3. The VO and IO parameters are referenced to VSO1, 2, 3.
Tj = 25C Tj = 55 to 125C
Symbol
IO+,Amp IO-,Amp Circuit
Parameter
Amplifier Output High Short Circuit Amplifier Output High Short Circuit Circuit
Min.
-- --
Typ.
4.5 3.2
Max.
6.5 5.2
Min. Max.
-- -- 8.0 7.0
Units
Test Conditions
CA- = 0V, VSO = 5V VCAO = 0V CA- = 5V, VSO = 0V VCAO = 5V
4
www.irf.com
IR2130D
HIN1,2,3
4
LIN1,2,3
ITRIP FAULT HO1,2,3 LO1,2,3
Figure 1. Input/Output Timing Diagram
Figure 2. Floating Supply Voltage Transient Test Circuit
HIN1,2,3
HIN1,2,3 LIN1,2,3
50% 50% 50% 50%
LIN1,2,3
ton tr 90% 50% 50% toff 90% tf
LO1,2,3
HO1,2,3
DT DT
HO1,2,3 LO1,2,3
10%
10%
Figure 3. Deadtime Waveform Definitions
Figure 4. Input/Output Switching Time Waveform Definitions
50%
LIN1,2,3 V CC
50%
ITRIP
V S0 CA50% 50%
+ V SS CAO
FAULT
LO1,2,3
50% tflt titrip tfltclr
V SS
Figure 5. Overcurrent Shutdown Switching Time Waveform Definitions
Figure 6. Diagnostic Feedback Operational Amplifier Circuit
www.irf.com
5
IR2130D
3V CA0V VS0 15V VCC + CAO V SS 50 pF
+
15V V S0 CA+ V SS 20k 1k V CC CAO
T1 3V V 0V 10% 90%
T2
0.2V
SR- = T2 T1 Figure 7. Operational Amplifier Slew Rate Measurement
SR+ =
V
V
VOS =
VCAO 21
- 0.2V
Figure 8. Operational Amplifier Input Offset Voltage Measurement
V CC
15V VCC CAVS0 CAO + V SS 0.2V
+
V S0 CA-
+ V SS 20k CAO
1k
Measure V CAO1 at VS0 = 0.1V VCAO2 at VS0 = 5V CMRR = -20*LOG (VCAO1-0.1V) - (V CAO2-5V) 4.9V (dB)
Measure VCAO1 at VCC = 10V VCAO2 at VCC = 20V (10V) (21) Figure 10. Operational Amplifier Power Supply Rejection Ratio Measurements
1.50
PSRR = -20* LOG
VCAO1 - VCAO2
Figure 9. Operational Amplifier Common Mode Rejection Ratio Measurements
1.50
1.20 Turn-On Delay Time (s)
Max.
1.20 Turn-On Delay Time (s)
0.90
Typ.
0.90
Max.
Typ.
0.60
Min.
0.60
Min.
0.30
0.30
0.00 -50 -25 0 25 50 75 100 125 Temperature (C)
0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V)
Figure 11A. Turn-On Time vs. Temperature
Figure 11B. Turn-On Time vs. Voltage
6
www.irf.com
IR2130D
1.00 1.00
0.80 Turn-Off Delay Time (s) Turn-Off Delay Time (s)
0.80
0.60
Max.
0.60
Max.
Typ.
0.40
Typ.
0.40
Min.
Min.
0.20
0.20
0.00 -50 -25 0 25 50 75 100 125 Temperature (C)
0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V)
Figure 12A. Turn-Off Time vs. Temperature
Figure 12B. Turn-Off Time vs. Voltage
250
250
200 Turn-On Rise Time (ns) Turn-On Rise Time (ns)
200
Max.
150
150
100
Max.
100
Typ.
Typ.
50
50
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 10 12 14 16 18 20 VBIAS Supply Voltage (V)
Figure 13A. Turn-On Rise Time vs. Temperature
Figure 13B. Turn-On Rise Time vs. Voltage
125
125
100 Turn-Off Fall Time (ns) Turn-Off Fall Time (ns)
100
75
75
Max.
50
Max. Typ.
50
Typ.
25
25
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 10 12 14 16 18 20 VBIAS Supply Voltage (V)
Figure 14A. Turn-Off Fall Time vs. Temperature
Figure 14B. Turn-Off Fall Time vs. Voltage
www.irf.com
7
IR2130D
1.50 1.50 ITRIP to Output Shutdown Delay Time (s) 1.20
Max.
ITRIP to Output Shutdown Delay Time (s)
1.20
Max.
0.90
Typ.
0.90
Typ.
0.60
Min.
0.60
Min.
0.30
0.30
0.00 -50 -25 0 25 50 75 100 125 Temperature (C)
0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V)
Figure 15A. ITRIP to Output Shutdown Time vs. Temperature
Figure 15B. ITRIP to Output Shutdown Time vs. Voltage
1.50
1.50
ITRIP to FAULT Indication Delay Time (s)
1.20
Max.
ITRIP to FAULT Indication Delay Time (s)
1.20
0.90
Typ.
0.90
Max.
0.60
Min.
0.60
Typ.
Min.
0.30
0.30
0.00 -50 -25 0 25 50 75 100 125 Temperature (C)
0.00 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 16A. ITRIP to FAULT Indication Time vs. Temperature
Figure 16B. ITRIP to FAULT Indication Time vs. Voltage
25.0
25.0
LIN1,2,3 to FAULT Clear Time (s)
LIN1,2,3 to FAULT Clear Time (s)
20.0
20.0
15.0
Max.
15.0
Max.
10.0
Typ. Min.
10.0
Typ. Min.
5.0
5.0
0.0 -50 -25 0 25 50 75 100 125 Temperature (C)
0.0 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 17A. LIN1,2,3 to FAULT Clear Time vs. Temperature
Figure 17B. LIN1,2,3 to FAULT Clear Time vs. Voltage
8
www.irf.com
IR2130D
7.50 7.50 6.00 6.00
Deadtime (s)
Deadtime (s)
4.50
Max.
4.50
Max.
3.00
Typ.
3.00
Typ.
1.50
Min.
1.50
Min.
0.00 -50 -25 0 25 50 75 100 125 Temperature (C)
0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V)
Figure 18A. Deadtime vs. Temperature
Figure 18B. Deadtime vs. Voltage
10.0
10.0
8.0 Amplifier Slew Rate + (V/s)
Typ.
8.0 Amplifier Slew Rate + (V/s)
Typ.
6.0
Min.
6.0
Min.
4.0
4.0
2.0
2.0
0.0 -50 -25 0 25 50 75 100 125 Temperature (C)
0.0 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 19A. Amplifier Slew Rate (+) vs. Temperature
Figure 19B. Amplifier Slew Rate (+) vs. Voltage
5.00
5.00
4.00 Amplifier Slew Rate - (V/s) Amplifier Slew Rate - (V/s)
Typ.
4.00
Typ.
3.00
Min.
3.00
Min.
2.00
2.00
1.00
1.00
0.00 -50 -25 0 25 50 75 100 125 Temperature (C)
0.00 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 20A. Amplifier Slew Rate (-) vs. Temperature
Figure 20B. Amplifier Slew Rate (-) vs. Voltage
www.irf.com
9
IR2130D
5.00 5.00 4.00 Logic "0" Input Threshold (V) Logic "0" Input Threshold (V) 4.00
3.00
Min.
3.00
Min.
2.00
2.00
1.00
1.00
0.00 -50 -25 0 25 50 75 100 125 Temperature (C)
0.00 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 21A. Logic "0" Input Threshold vs. Temperature
Figure 20B. Logic "0" Input Threshold vs. Voltage
5.00
5.00
4.00 Logic "1" Input Threshold (V) Logic "1" Input Threshold (V)
Max.
4.00
3.00
3.00
2.00
2.00
1.00
1.00
Max.
0.00 -50 -25 0 25 50 75 100 125 Temperature (C)
0.00 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 22A. Logic "1" Input Threshold vs. Temperature
Figure 22B. Logic "1" Input Threshold vs. Voltage
750
750
ITRIP Input Positive Going Threshold (mV)
600
Max.
ITRIP Input Positive Going Threshold (mV)
600
Max. Typ.
Typ.
450
Min.
450
Min.
300
300
150
150
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 23A. ITRIP Input Positive Going Threshold Temperature
vs.
Figure 23B. ITRIP Input Positive Going Threshold Voltage
vs.
10
www.irf.com
IR2130D
1.00 1.00 0.80 High Level Output Voltage (V) High Level Output Voltage (V)
Max.
0.80
0.60
0.60
0.40
0.40
0.20
0.20
Max.
0.00 -50 -25 0 25 50 75 100 125 Temperature (C)
0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V)
Figure 24A. High Level Output vs. Temperature
Figure 24B. High Level Output vs. Voltage
1.00
1.00
0.80 Low Level Output Voltage (V) Low Level Output Voltage (V)
Max.
0.80
0.60
0.60
0.40
0.40
0.20
0.20
Max.
0.00 -50 -25 0 25 50 75 100 125 Temperature (C)
0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V)
Figure 25A. Low Level Output vs. Temperature
Figure 25B. Low Level Output vs. Voltage
500
500
Offset Supply Leakage Current (A)
Offset Supply Leakage Current (A)
400
400
300
300
200
200
100
Max.
100
Max.
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 0 100 200 300 400 500 600 VB Boost Voltage (V)
Figure 26A. Offset Supply Leakage Current vs. Temperature
Figure 26B. Offset Supply Leakage Current vs. Voltage
www.irf.com
11
IR2130D
100 100 80 VBS Supply Current (A) VBS Supply Current (A)
Max.
80
60
60
40
40
20
Typ.
20
Max.
Typ.
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 10 12 14 16 18 20 VBS Floating Supply Voltage (V)
Figure 27A. VBS Supply Current vs. Temperature
Figure 27B. VBS Supply Current vs. Voltage
10.0
10.0
8.0 VCC Supply Current (mA) VCC Supply Current (mA)
8.0
6.0
6.0
4.0
Max. Typ.
4.0
Max.
2.0
2.0
Typ.
0.0 -50 -25 0 25 50 75 100 125 Temperature (C)
0.0 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 28A. VCC Supply Current vs. Temperature
Figure 28B. VCC Supply Current vs. Voltage
1.25
1.25
1.00 Logic "1" Input Bias Current (mA) Logic "1" Input Bias Current (mA)
1.00
0.75
0.75
0.50
Max. Typ.
0.50
Max. Typ.
0.25
0.25
0.00 -50 -25 0 25 50 75 100 125 Temperature (C)
0.00 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 29A. Logic "1" Input Current vs. Temperature
Figure 29A. Logic "1" Input Current vs. Voltage
12
www.irf.com
IR2130D
1.25 1.25
1.00 Logic "0" Input Bias Current (mA) Logic "0" Input Bias Current (mA)
1.00
0.75
0.75
0.50
Max.
0.50
0.25
Typ.
0.25
Max. Typ.
0.00 -50 -25 0 25 50 75 100 125 Temperature (C)
0.00 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 30A. Logic "0" Input Current vs. Temperature
Figure 30B. Logic "0" Input Current vs. Voltage
500
500
400 "High" ITRIP Bias Current (A) "High" ITRIP Bias Current (A)
400
300
300
200
Max.
200
Max.
100
Typ.
100
Typ.
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 31A. "High" ITRIP Current vs. Temperature
Figure 31B. "High" ITRIP Current vs. Voltage
250
500
200 "Low" ITRIP Bias Current (A) "Low" ITRIP Bias Current (nA)
400
150
300
100
Max.
200
50
100
Max.
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 32A. "Low" ITRIP Current vs. Temperature
Figure 32B. "Low" ITRIP Current vs. Voltage
www.irf.com
13
IR2130D
11.0 11.0 10.0 VBS Undervoltage Lockout + (V) VBS Undervoltage Lockout - (V) 10.0
9.0
Max.
9.0
Max.
Typ.
8.0
Min.
8.0
Typ.
7.0
7.0
Min.
6.0 -50 -25 0 25 50 75 100 125 Temperature (C)
6.0 -50 -25 0 25 50 75 100 125 Temperature (C)
Figure 33. VBS Undervoltage (+) vs. Temperature
Figure 34. VBS Undervoltage (-) vs. Temperature
11.0
11.0
10.0 VCC Undervoltage Lockout + (V)
VCC Undervoltage Lockout - (V)
Max.
10.0
Max.
9.0
Typ.
9.0
Typ.
Min.
8.0
8.0
Min.
7.0
7.0
6.0 -50 -25 0 25 50 75 100 125 Temperature (C)
6.0 -50 -25 0 25 50 75 100 125 Temperature (C)
Figure 35. VCC Undervoltage (+) vs. Temperature
Figure 36. VCC Undervoltage (-) vs. Temperature
250
250
FAULT- Low On Resistance (ohms)
150
FAULT- Low On Resistance (ohms)
200
200
150
100
100
Max. Typ.
Max.
50
Typ.
50
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 37A. FAULT Low On Resistance vs. Temperature
Figure 37B. FAULT Low On Resistance vs. Voltage
14
www.irf.com
IR2130D
500 500 400 Output Source Current (mA) Output Source Current (mA) 400
300
Typ. Min.
300
200
200
Typ.
100
100
Min.
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 10 12 14 16 18 20 VBIAS Supply Voltage (V)
Figure 38A. Output Source Current vs. Temperature
Figure 38B. Output Source Current vs. Voltage
750
750
600 Output Sink Current (mA)
Typ.
625 Output Sink Current (mA)
Min.
500
450
375
Typ.
300
250
Min.
150
125
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 10 12 14 16 18 20 VBIAS Supply Voltage (V)
Figure 39A. Output Sink Current vs. Temperature
Figure 39B. Output Sink Current vs. Voltage
50
50
Amplifier Input Offset Voltage (mV)
Max.
30
Amplifier Input Offset Voltage (mV)
40
40
30
Max.
20
20
10
10
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 40A. Amplifier Input Offset vs. Temperature
Figure 40B. Amplifier Input Offset vs. Voltage
www.irf.com
15
IR2130D
10.0 10.0
8.0 CA- Input Bias Current (nA) CA- Input Bias Current (nA)
8.0
6.0
6.0
4.0
Max.
4.0
Max.
2.0
2.0
0.0 -50 -25 0 25 50 75 100 125 Temperature (C)
0.0 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 41A. CA- Input Current vs. Temperature
Figure 41B. CA- Input Current vs. Voltage
100
100
80 Amplifier CMRR (dB)
Typ.
80 Amplifier CMRR (dB)
Typ.
60
Min.
60
Min.
40
40
20
20
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 42A. Amplifier CMRR vs. Temperature
Figure 42B. Amplifier CMRR vs. Voltage
100
100
80
Typ.
80 Amplifier PSRR (dB)
Typ.
Amplifier PSRR (dB)
60
Min.
60
Min.
40
40
20
20
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 43A. Amplifier PSRR vs. Temperature
Figure 43B. Amplifier PSRR vs. Voltage
16
www.irf.com
IR2130D
6.00 6.00 Amplifier High Level Output Voltage (V) Amplifier High Level Output Voltage (V) 5.70 5.70
5.40
Max.
5.40
Max.
Typ.
Typ.
5.10
Min.
5.10
Min.
4.80
4.80
4.50 -50 -25 0 25 50 75 100 125 Temperature (C)
4.50 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 44A. Amplifier High Level Output vs. Temperature
Figure 44B. Amplifier High Level Output vs. Voltage
100
100
Amplifier Low Level Output Voltage (mV)
80
Amplifier Low Level Output Voltage (mV)
80
60
60
40
40
20
Max.
20
Max.
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 45A. Amplifier Low Level Output vs. Temperature
Figure 45B. Amplifier Low Level Output vs. Voltage
10.0
10.0
Amplifier Output Source Current (mA)
6.0
Typ.
Amplifier Output Source Current (mA)
8.0
8.0
6.0
4.0
Min.
4.0
Typ.
2.0
2.0
Min.
0.0 -50 -25 0 25 50 75 100 125 Temperature (C)
0.0 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 46A. Amplifier Output Source Current vs. Temperature
Figure 46B. Amplifier Output Source Current vs. Voltage
www.irf.com
17
IR2130D
5.00 5.00 Amplifier Output Sink Current (mA) Amplifier Output Sink Current (mA) 4.00 4.00
3.00
Typ.
3.00
2.00
Min.
2.00
Typ. Min.
1.00
1.00
0.00 -50 -25 0 25 50 75 100 125 Temperature (C)
0.00 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 47A. Amplifier Output Sink Current vs. Temperature
Figure 47B. Amplifier Output Sink Current vs. Voltage
15.0
15.0
Output High Short Circuit Current (mA)
9.0
Max.
Output High Short Circuit Current (mA)
12.0
12.0
9.0
6.0
Typ.
6.0
Max.
3.0
3.0
Typ.
0.0 -50 -25 0 25 50 75 100 125 Temperature (C)
0.0 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 48A. Amplifier Output High Short Circuit Current vs. Temperature
Figure 48B. Amplifier Output High Short Circuit Current vs. Voltage
15.0
15.0
Output Low Short Circuit Current (mA)
9.0
Output Low Short Circuit Current (mA)
12.0
12.0
9.0
6.0
Max.
6.0
Max.
Typ.
3.0
3.0
Typ.
0.0 -50 -25 0 25 50 75 100 125 Temperature (C)
0.0 10 12 14 16 18 20 VCC Supply Voltage (V)
Figure 49A. Amplifier Output Low Short Circuit Current vs. Temperature
Figure 49B. Amplifier Output Low Short Circuit Current vs. Voltage
18
www.irf.com
IR2130D
50
480V
50
480V
45 Junction Temperature (C) Junction Temperature (C)
45
40
320V
40
320V
35
160V
35
160V
30
0V
30
0V
25
25
20 1E+2
1E+3 Frequency (Hz)
1E+4
1E+5
20 1E+2
1E+3 Frequency (Hz)
1E+4
1E+5
Figure 50. IR2130 TJ vs. Frequency (IRF820) RGATE = 33W, VCC = 15V
Figure 51. IR2130 T J vs. Frequency (IRF830) RGATE = 20W, VCC = 15V
100
140
480V
120 80 Junction Temperature (C) Junction Temperature (C) 100
320V
60
480V 320V
80
160V
60
0V
40
160V
40
0V
20 1E+2
1E+3 Frequency (Hz)
1E+4
1E+5
20 1E+2
1E+3 Frequency (Hz)
1E+4
1E+5
Figure 52. IR2130 TJ vs. Frequency (IRF840) RGATE = 15W, VCC = 15V
Figure 53. IR2130 T J vs. Frequency (IRF450) RGATE = 10W, VCC = 15V
0.0
-3.0 VS Offset Supply Voltage (V)
Typ.
-6.0
-9.0
-12.0
-15.0 10 12 14 16 18 20 VBS Floating Supply Voltage (V)
Figure 54. Maximum VS Negative Offset vs. VBS Supply Voltage
www.irf.com
19
IR2130D
Functional Block Diagram
Lead Definitions
Lead Symbol Description
HIN1,2,3 LIN1,2,3
Logic inputs for high side gate driver outputs (HO1,2,3), out of phase Logic inputs for low side gate driver output (LO1,2,3), out of phase Indicates over-current or undervoltage lockout (low side) has occurred, negative logic Low side and logic fixed supply Input for over-current shutdown Output of current amplifier Negative input of current amplifier Logic ground High side floating supplies High side gate drive outputs High side floating supply returns Low side gate drive outputs Low side return and positive input of current amplifier
FAULT VCC
ITRIP CAO CAVSS VB1,2,3 HO1,2,3 VS1,2,3 LO1,2,3 VS0
20
www.irf.com
IR2130D
Case Outline and dimensions - MO038AB
LEAD ASSIGNMENT
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTER: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111 IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936 Data and specifications subject to change without notice. 3/00
www.irf.com
21


▲Up To Search▲   

 
Price & Availability of IR2130D

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X